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Abstract. Using the transfer-matrix technique and Monte Carlo simulations we examine a
one-dimensional SOS model of wetting with unequal attracting potentials at the boundaries. At
low temperatures the model has a metastable state with the interface pinned to the boundary
of weaker potential. Monte Carlo simulations suggest that the lifetime of this metastable state
diverges exponentially with the system size. Above a certain temperature this state becomes
unstable and diffusion drives the interface to the boundary of a stronger potential. The transfer
matrix of this model contains information about the equilibrium state (the largest eigenvalue)
as well as the metastable state (the second largest eigenvalue). Gaps between these two largest
eigenvalues and the continuous band close at distinct temperatures. The behaviour of our model
is also described in terms of introduced constrained free energy.

1. Introduction

Despite intensive studies over recent decades, metastability still constitutes a challenging
problem in statistical mechanics. Even the very existence of metastable states is a highly
nontrivial issue. It is believed that in the thermodynamic limit and in short-range interacting
systems such states eventually decay although their lifetimeτ might be very long. Only in
certain long-range interacting systems are such states known to have an infinite lifetime [1].
One of the main objectives in studying metastable systems is to infer their quasistationary
properties from suitably generalized principles of equilibrium statistical mechanics. In this
context an important result of Langer states that for a certain class of models the nucleation
rate is proportional to the imaginary part of the free energy of the metastable state, which
is obtained by analytic continuation of the equilibrium free energy [2]. Moreover, Newman
and Schulman [3] suggested that some information on metastable states and their decay
can be obtained from the spectrum of the transfer matrix. Probably the most thorough
confirmation of these (not rigorous) results was obtained for certain lattice systems and in
particular for the Ising model (for a recent discussion of metastability and an extensive list of
references see [4]). However, as we have already mentioned, in these short-range interacting
models metastability is only a quantitative effect. Moreover, to study metastability in the
Ising model we have to include a magnetic field or introduce specific boundary conditions,
which precludes a rigorous analysis and considerably hampers numerical approaches even
for static properties. It would be desirable to find some other short-range interacting
models of metastability, which would be easier to analyse and in which metastability would
be a qualitative effect, i.e. the lifetime of the metastable state would be infinite (in the
thermodynamic limit) for a certain range of parameters.

In this paper we show that a certain one-dimensional (1D) SOS model possesses a
metastable state. With respect to the static properties, the model is quite simple and its
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thermodynamic quantities, such as free energy and internal energy, can be determined
exactly even in the metastable states. These quantities are actually obtained from the
largest and second largest eigenvalues of the transfer matrix of the model. Moreover, in this
model at a certain temperatureTM the metastable state loses its (meta)stability and at higher
temperatures diffusion, relatively quickly, drives the interface into the stable (equilibrium)
state. Thus, the transition atTM is a kind of dynamical phase transition. We also introduce
the constrained free energy which is actually the free energy with the interface fixed at the
boundaries. Numerical evidence is presented that such free energy not always converges to
the ordinary free energy (obtained, for example from the largest eigenvalue of the transfer
matrix) but might converge to the free energy of metastable states. The fact that the bulk
free energy depends on the boundary conditions is in our opinion quite surprising.

This paper is organized as follows. In section 2 we introduce the model and examine
the spectrum of its transfer matrix. Results of Monte Carlo simulations are presented
in section 3. In section 4 we describe our model in terms of constrained free energy.
Conclusions and possibilities of extensions of our research are described in section 5.

2. Model and its transfer matrix

Let us consider a 1D SOS model described by the Hamiltonian:

H = J
N‖∑
i=1

|hi − hi+1| + v1

N‖∑
i=1

δhi ,0+ v2

N‖∑
i=1

δhi ,N⊥ (2.1)

where{hi} are discrete height variableshi = 0, 1, . . . , N⊥ and the boundary potentialsv1, v2

are negative. In the following we putJ = 1 andv1 > v2. The horizontal and vertical sizes
are denoted asN‖ andN⊥, respectively.

Similar models, namely with only one boundary potential have already been studied
in the context of wetting phenomena [5]. In such a case at low temperature the interface
described by the Hamiltonian (2.1) is localized at the attracting boundary and only above a
certain critical temperatureTw does it delocalize. Thermodynamic properties of the model
(2.1) with only one attracting potential can be easily obtained using the transfer-matrix
technique. For example, assuming that only theh = 0 potential is present and the limit
N⊥ → ∞ is taken, the largest eigenvalueλ1 of the transfer matrix

Th,h′ = e−β(|h−h
′|+v1δh,0) (2.2)

can be easily found assuming that its eigenvector has the formψ1(h) = e−µh for h > 0 and
ψ1(0) is determined separately. One obtains [5]:

λ1 = (e−βv1 − 1)(1− e−2β)

1− eβv1 − e−2β
(2.3)

whereβ = 1
kBT

and kB is the Boltzmann constant which in the following is put to unity.
The parameterµ might be regarded as an inverse of one of the characteristic lengths of the
system [5]. From the eigenvalueλ1 one can easily obtain free energyf = −β−1 ln λ1 and
internal energyu = − ∂

∂β
ln λ1. Assuming an eigenvector of oscillatory form, one can also

determine other eigenvalues of the transfer matrix (2.2) which constitute a continuous band
of extended states. The largest eigenvalue of this band is given by the following expression:

λextended= 1+ e−β

1− e−β
. (2.4)
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The extended states describe the free interface (let us note that (2.4) does not depend on
v1). The wetting temperature in this model is given as a solution of the following equation
[5]:

e−v1/Tw1 = (1− e−1/Tw1 )−1. (2.5)

A version of model (2.1), where neighbouring heights differ at most by unity (RSOS),
with v1 = v2 has been studied several years ago by Privman andŠvrakíc [6] in the context
of equilibrium finite-size scaling. However, these authors did not examine the case of
v1 6= v2 where the model has a metastable state and which in our opinion is worth further
examination.

The static free energies of model (2.1) can be obtained from the eigenvalues
corresponding to the two bound states of the transfer matrix:

Th,h′ = e−β(|h−h
′|+v1δh,0+v2δh,N⊥ ). (2.6)

The form of these eigenvectors can be easily found in the limitN⊥ → ∞. In this limit the
bound stateψ1(h) = e−µh does not ‘feel’ the potentialv2 at the opposite boundary and thus
this is also a bound state for the transfer matrix (2.6) with the corresponding eigenvalue
λ1 the same as in (2.3). However, in the same way one can argue that the bound state
localized at the opposite boundaryh = N⊥ and having the formψ2(h) = e−µ

′(N⊥−h) does
not ‘feel’ the potentialv1 and thus this is also an eigenvector of (2.6). The eigenvalueλ2

corresponding toψ2(h) is given by (2.3) withv1 replaced byv2.
To confirm our predictions concerning the spectrum of (2.6) we diagonalized this matrix

numerically. Since the dimension of (2.6) increases linearly withN⊥, we could perform
accurate diagonalization even forN⊥ ∼ 1000. We found that indeed for increasingN⊥ the
largest and second largest eigenvalues rapidly converge to (2.3) with potentialsv2 andv1,
respectively. With our choice of potentials (v1 > v2) only the first eigenvector corresponds
to the equilibrium state (the interface pinned to theh = 0 line) while the second one
corresponds to the metastable state (the interface pinned to theh = N line). In figure 1 we
present the three largest eigenvalues forv1 = −2 andv2 = −3 as functions of temperature.
Numerical diagonalization has been performed forN⊥ = 500. One can easily see that
gaps between these eigenvalues close at distinct temperatures which we denote byTw1

and Tw2 (Tw1 < Tw2). Moreover, our numerical results show that these temperatures are
very close to the wetting temperatures (2.5) which for our choice of potentials are equal to
Tw1 = 2.078 087. . . andTw2 = 2.616 123. . ., respectively.

It is interesting to consider the limitv1 = v2. In such a case, in the thermodynamic
limit we haveλ1 = λ2. There is, however, no contradiction with the Frobenius theorem [7]
about nondegeneracy of the largest eigenvalue of the positive matrix because forN⊥ → ∞
almost all elements of the transfer matrix vanish. For every finiteN⊥ two largest eigenvalue
λ1 andλ2 are, of course, nondegenerate even forv1 = v2. Let us also note that in this case
in the thermodynamic limit we have spontaneous symmetry breaking forT < Tw1 = Tw2.

For comparison with Monte Carlo data, in figure 2 we also present the internal energies
of both bound states and extended state as calculated from the derivatives ofλ1, λ2 and
λextended.

3. Monte Carlo simulations

To examine the dynamical properties of our model, we resorted to standard Monte Carlo
simulations [8]. In each time step the interface at a randomly chosen site can increase or
decrease its height by unity or it can remain at the same height. When the move increases the
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Figure 1. The three largest eigenvalues of transfer matrix (2.6) as functions of temperature.
Vertical dotted lines indicate the wetting temperaturesTw1 = 2.078 087. . . and Tw2 =
2.616 123. . .. Within the resolution of our figure the exact expressions given by (2.3) and
(2.4) are indistinguishable from our numerical results.

total energy by1E, then it is accepted with the probabilityp = e−β1E . Initially the interface
is placed at a metastable boundary, i.e. ath = 0. We present results forN⊥ = N‖ = N but
our simulations show that for other aspect ratio qualitatively similar results are obtained.
However, it is possible that when the thermodynamic limit is approached in another way (e.g.
N⊥, N‖ → ∞ with N⊥/N‖ → 0) our results, especially those concerning the dynamical
properties, would be considerably modified. The importance of the way of taking the
thermodynamic limit was already emphasized by Nijmeijer [9] who studied equilibrium
properties of a continuous version of model (2.1) withv1 = v2.

A typical Monte Carlo run which shows internal energy as a function of temperature
for N = 60 and 200 000 Monte Carlo steps for each data point is shown in figure 2. As
expected, at low temperatures the system remains in the metastable state and at higher
temperature it jumps to the equilibrium state. This jump happens very close toTw1 and we
believe that in this model this is also the temperatureTM of the dynamical transition where
a metastable state dramatically loses its stability. Let us recall that at this temperature,
according to figure 1, the gap between the second and third eigenvalue closes.

To confirm that indeed atT = Tw1 the qualitative change in the properties of the
metastable state takes place, we measured the average lifetime of metastable stateτ defined
as a time needed to reach the state with certain threshold internal energyut . ForT = 1.5, 1.8
we choseut = −2 while for T = Tw1 and T = 2.3 we choseut = −1 andut = −0.1,
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Figure 2. The internal energy calculated from the eigenvalues of the two bound states of the
transfer matrix (2.6) (——) and the internal energy of the extended state (– – –) forv1 = −3
andv2 = −2. Full circles show the results from the Monte Carlo simulations.

respectively. Justification for this somewhat arbitrary definition is that, as we noted, once
the system reaches this energy, further evolution towards the equilibrium state is very fast.
ForT = Tw1 andT = 2.3 we also had to measure the location of the interface to ensure that
reaching the threshold energy the system is really close to the boundary with the stronger
potential (i.e. is close to the equilibrium state).

Our results for several temperatures are shown on a logarithmic scale in figure 3. One
can see that, indeed, there are two regimes with different size dependence ofτ . ForT < Tw1

the lifetimeτ rapidly increases with the system sizeN . An increasing slope suggests that
asymptotically the power-law increaseτ ∼ Na is rather unlikely. Using the least square
method we fitted our data to the functionτ = abN

ω

and we noted that for increasing
N the exponentω is close to unity. Thus, in this temperature range the characteristic
time τ probably increases exponentiallyτ ∼ bN . Such a rapid increase ofτ implies that
the metastable state is very stable. Let us notice that the exponential divergence ofτ is
an indication of broken ergodicity [10]. Usually, however, the breakdown of ergodicity
decomposes the system into components of equal free energy. This is, for example, the
case in the Ising model, where below the critical temperature each of the two ferromagnetic
phases have the same free energy. This is clearly not the case in our SOS model.

For T > Tw1 we observe different size dependences ofτ . Namely, our results show that
in this temperature range we haveτ ∼ N3. Althoughτ also diverges in the thermodynamic
limit, this divergence does not indicate metastability. Indeed, we checked that simulating
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Figure 3. Size dependence of the lifetimeτ in the logarithmic scale forT = 1.5 (♦), T = 1.8
(M), T = Tw1 ∼ 2.078 087 (�) andT = 2.3 (◦). The dotted curve has a slope corresponding
to τ ∼ N3. Each point represents an average over 10 000 runs and only some results for largest
system size are obtained averaging over 1000 runs.

the system withv1 = −3 andv2 = 0, i.e. with no attracting potential at the boundary where
the interface is placed initially, we have also the same size dependenceτ ∼ N3, which is
thus related with the purely diffusive spreading of an interface.

It would be desirable to understand the simple relationτ ∼ N3 at least qualitatively.
It seems to us that in this temperature range the diffusion of our interface is related with
diffusion of polymers. Indeed, there is numerical evidence supported by some scaling
arguments [11] that the characteristic time needed for the polymer to diffuse the distance of
its own sizeN increases asN3 in agreement with our observations. Analytical arguments
supporting such a behaviour are best explained using the so-called Rouse model [12]. In
this model, which is basically a Gaussian model of a polymer, one can show [13] that
the effective diffusion constant of a polymer decreases as 1/N whereN is the number of
monomers. On the other hand, the average square spread during the timet in the diffusion
process increases likeDt whereD is the diffusion constant. Combining this result with the
Rouse model predictionD ∼ 1/N we easily arrive atτ ∼ N3.

To close this section let us compare metastability in our model with the Ising model. In
the latter model metastability appears when, for example the positively magnetized system
(below a critical temperature) is immersed in the negative magnetic field. Subsequent
evolution to the equilibrium, negatively magnetized phase proceeds through saddle-point
configurations which are droplets of negative spins. In model (2.1) the ‘bulk’ field is the
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boundary potential at the opposite end of the system. Thus, to reach the equilibrium state the
system has to proceed through spike-like configurations (stretching from one boundary to
another). The energy of these saddle-point configurations is, however, much higher (grows
linearly with N ) and this is the basic reason why the metastable state in model (2.1) is so
stable.

4. Constrained free energy

In this section we describe the behaviour of our model in terms of constrained free energy
f (m) which is defined as follows

e−βN‖f (m) =
∑′

{hi }
e−βH 06 m 6 1 (4.1)

where the prime indicates that the summation is performed only overhi with i =
2, 3 . . . N‖−1 while h1 andhN‖ are kept fixed andh1 = hN‖ = mN⊥=M. For computational
purposes we replace the right-hand side of (4.1) with(T N‖)MM which is equivalent to (4.1)
in the thermodynamic limit;T is the transfer matrix (2.6). Plots off (m) as a function ofm
for N⊥ = N‖ = 512 are shown in figure 4 and the size dependence is presented in figure 5.

A surprising result is that the extensive (withN‖) quantityf (m), depends onm, i.e. on
the boundary conditions. The most interesting feature off (m) suggested by our numerical

Figure 4. The constrained free energyf (m) as a function ofm. Full circles denote free energies
as calculated from the spectrum of the transfer matrix (2.6). Numerical calculations were done
for N = 512 and within the resolution of the figure finite-size effects are negligible.
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Figure 5. The free energy of extended state forT = 2.3 as a function of 1/N calculated from
the second largest eigenvalue (•) of transfer matrix (2.6) and using (4.1) withm = 0 (◦).
Results of both methods seem to converge to the same value. The triangle on the vertical axis
corresponds to the exact free energy of extended state as given (2.4). At this temperature the
second and the third eigenvalues are degenerate in the thermodynamic limit (see figure 1).

calculations is that forT < Tw1, f (0) equals the free energy of the metastable state.
Moreover, forTw1 < T < Tw2 and sufficiently smallm, f (m) equals the free energy of
the extended state. It would be interesting to examine whether in more general cases the
boundary-dependent free energy is the indication of metastability. Let us notice that the
extended state is also in some sense metastable: the interface placed initially in the position
with finite m reaches the equilibrium state after the time which most likely grows likeN3

(providedTw1 < T < Tw2).
Finally let us emphasize that them-dependence off (m) is a consequence of taking

the thermodynamic limit by increasing both sizesN⊥ andN‖ simultaneously. This effect
would disappear if we took the limitN‖ → ∞ first. In such a case the largest eigenvalue
of transfer matrix would dominate the sum in (4.1) independently ofm.

5. Conclusions

We showed that in a certain range of temperatures a simple 1D SOS model has an
exponentially long-lived metastable state. In this model a number of static properties are
known exactly or can be calculated very accurately. Such a wealth of results makes this
model very useful for testing some other approaches developed in the context of metastable
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systems, e.g. Rikvold’s constrained transfer matrix technique [4, 14]. The most interesting
conclusion which follows from our results is that the metastable state, at least in certain
models, can be examined using suitably generalized methods of equilibrium statistical
mechanics. Indeed, in our model the free energy of metastable state is encoded in the
standard transfer matrix as a second largest eigenvalue. Moreover, as follows from section 4,
this quantity can be obtained just by imposing certain boundary conditions. It is, however,
not known to us to what extent these results generalize to other systems with metastable
state [15].

Is the kind of metastability which we described above restricted to only model (2.1) or
might it appear in some other models as well? Some years ago Forgacset al [16] studied
a model where there are also two lines of attracting potential but one of them was in the
interior of the model. They have shown that for such a model the continuous delocalization
of the interface does not take place; instead at a lower temperature there is a discontinuous
jump of the interface to the other (interior) line of attracting potential. Their calculations
are exact in the sense of equilibrium statistical mechanics but such an approach obviously
misses any metastable effects. However, in our opinion, in their model metastability will
appear for the same reasons as in our model (2.1). Namely, from our results it follows that
for any temperature below the wetting transition, an interface pinned to the boundary by
attractive potential remains in this state (in the thermodynamic limit for infinitely long time)
even if there is another more stable (equilibrium) state. The last statement applies to the
case when both attractive boundaries are spatially separated over the distanceN and, in our
opinion, this is essential for the (presumably) exponential withN divergence ofτ . Such
a separation in a slightly different geometry appears in the model examined by Forgacs
et al and thus we expect that very strong metastable effects are present in their model
too. Thus, if our arguments are correct, Forgacset al’s predictions concerning experimental
relevance of the distant defects and imperfections in the unbinding transition require serious
reconsiderations. Checking that indeed metastability suppresses the first-order transition in
the Forgacset al’s model is, however, left for the future.
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